Some Regularity Results for the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix
نویسندگان
چکیده
The ε-pseudospectral abscissa αε and radius ρε of an n× n matrix are, respectively, the maximal real part and the maximal modulus of points in its ε-pseudospectrum, defined using the spectral norm. It was proved in [A.S. Lewis and C.H.J. Pang, SIAM J. Optim., 19 (2008), pp. 1048–1072] that for fixed ε > 0, αε and ρε are Lipschitz continuous at a matrix A except when αε and ρε are attained at a critical point of the norm of the resolvent (in the nonsmooth sense), and it was conjectured that the points where αε and ρε are attained are not resolvent-critical. We prove this conjecture, which leads to the new result that αε and ρε are Lipschitz continuous, and also establishes the Aubin property with respect to both ε and A of the ε-pseudospectrum for the points z ∈ C where αε and ρε are attained. Finally, we give a proof showing that the pseudospectrum can never be “pointed outwards.”
منابع مشابه
Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix
The ε-pseudospectral abscissa and radius of an n × n matrix are respectively the maximal real part and the maximal modulus of points in its ε-pseudospectrum, defined using the spectral norm. Existing techniques compute these quantities accurately but the cost is multiple singular value decompositions and eigenvalue decompositions of order n, making them impractical when n is large. We present n...
متن کاملSubspace Methods for Computing the Pseudospectral Abscissa and the Stability Radius
The pseudospectral abscissa and the stability radius are well-established tools for quantifying the stability of a matrix under unstructured perturbations. Based on first-order eigenvalue expansions, Guglielmi and Overton [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166-1192] recently proposed a linearly converging iterative method for computing the pseudospectral abscissa. In this paper, we pr...
متن کاملNew Algorithms for Computing the Real Structured Pseudospectral Abscissa and the Real Stability Radius of Large and Sparse Matrices
We present two new algorithms for investigating the stability of large and sparse matrices subject to real perturbations. The first algorithm computes the real structured pseudospectral abscissa and is based on the algorithm for computing the pseudospectral abscissa proposed by Guglielmi and Overton [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166-1192]. It entails finding the rightmost eigenva...
متن کاملVariational Analysis of Pseudospectra
The -pseudospectrum of a square matrix A is the set of eigenvalues attainable when A is perturbed by matrices of spectral norm not greater than . The pseudospectral abscissa is the largest real part of such an eigenvalue, and the pseudospectral radius is the largest absolute value of such an eigenvalue. We find conditions for the pseudospectrum to be Lipschitz continuous in the setvalued sense ...
متن کاملA predictor-corrector type algorithm for the pseudospectral abscissa computation of time-delay systems
The pseudospectrum of a linear time-invariant system is the set in the complex plane consisting of all the roots of the characteristic equation when the system matrices are subjected to all possible perturbations with a given upper bound. The pseudospectral abscissa is defined as the maximum real part of the characteristic roots in the pseudospectrum and, therefore, it is for instance important...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 22 شماره
صفحات -
تاریخ انتشار 2012